Magnetic nanotherapy of animals with carcinosarcoma Walker-256

TitleMagnetic nanotherapy of animals with carcinosarcoma Walker-256
Publication TypeJournal Article
Year of Publication2014
AuthorsOrel, VE, Shevchenko, AD, Rykhalskyi, OYu., Romanov, AV, Burlaka, AP, Lukin, SN, Venger, EF, Sydoryk, EP, Schepotin, IB
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.11.172
Issue11
SectionMedicine
Pagination172-179
Date Published11/2014
LanguageUkrainian
Abstract

Our experiments have shown that the antitumor activity of magnetic nanotherapy depends on the magnetic nanocomplex (MNC) parameters. MNC consisted of nanoparticles Fe3O4 and antitumor drug doxorubicin. Tumor-transplanted animals were subjected to the irradiation by permanent magnetic and electromagnetic fields. The highest antitumor activity and the survival rate of animals were observed after the treatment by MNC with the larger magnetic moment of saturation, and the large area square of the hysteresis loop and the lower coercivity. Intratumoral temperature does not exceed 38 ºC. The obtained results can be used to treat cancer patients.

Keywordsanimals, carcinosarcoma, magnetic nanotherapy, Walker-256
References: 

1. Amiji M. M. Nanotechnology for Cancer Therapy, Boca Raton: CRC Press, 2007.
2. Orel V., Dziatkovskaia N., Romanov A. Magnetic nanoterapiya cancer. Vol. 1, Saarbrucken: Lambert Academic Publishing, 2013.
3. Salikhov K. M., Molin Y. N., Sagdeev R. Z., Buchachenko A. L. Spin polarization and magnetic effects in radical reactions, Amsterdam: Elsevier, 1984.
4. Gielen M., Tiekink E. R. Metallotheraputic drugs and metal-based diagnostic agents – the use of metals in medicine, Chichester: Wiley, 2005. https://doi.org/10.1002/0470864052
5. Giuliani F. C., Kaplan N. O. Cancer research, 1980, 40: 4682–4687.
6. Emanuel N. M. The kinetics of experimental tumor processes, Moscow: Nauka, 1977 (in Russian).
7. Kaplan E. L., Meier P. J. Amer. Statist. Assoc., 1958, 53, No 282: 457–481. https://doi.org/10.1080/01621459.1958.10501452
8. Orel V. E., Shevchenko A. D., Dziatkovska I. I., Nikolov M. O., Romanov A. V., Rikhalskii A. Yu., Burlaka A. P., Lukin S. M., Dziatkovska N. M., Shepotin I. B. Dopov. Nac. akad. nauk Ukr., 2013, No 2: 177–183 (in Ukrainian).
9. Shah S. A., Jain R. K., Finney P. L. Cancer Lett, 1983, 19, Iss. 3: 317–323. https://doi.org/10.1016/0304-3835(83)90101-5
10. Shavel A., Rodr´ıguez-Gonz´alez B., Spasova M. et al. Adv. Funct. Mater., 2007, 17: 3870–3876. https://doi.org/10.1002/adfm.200700494
11. Osinskiy S., Vaupel S. Microphysiology of tumors, Kiev: Nauk. dumka, 2009 (in Russian).
12. Ghodbane S., Lahbib A., Sakly M., Abdelmelek H. BioMed Res. Int., 2013. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763575/.
13. Orel V. E., Grabovoi A. N., Romanov A. V., Kharkevich N. A., Schepotin I. B. Biul. eksperim. biologii i meditsiny, 2013, No 4: 479–482 (in Russian).
14. Cohen A. E. J. Phys. Chem., 2009, 113:11084– 11092. https://doi.org/10.1021/jp907113p
15. Orel V. E., Dzyatkovskaya N. N., Kruchkov E. I., Nikolov N. A., Rykhalskiy A. Y. et al. The Effect of the Inhomogeneous Magnetic Fields on the Antitumor Activity of Magnetic Nanotherapy. In: Proc. of 2014 IEEE XXXIV Intern. Sci. Conf. Electronics and Nanotechnology (ELNANO). – Heidelberg: Springer, 2014: 329–333. https://doi.org/10.1109/elnano.2014.6873909