Application of N-dimethyl benzoylamidophosphate-based coordination compounds in the development of the technology for metallorganic light-emitting diodes (MOLED)

TitleApplication of N-dimethyl benzoylamidophosphate-based coordination compounds in the development of the technology for metallorganic light-emitting diodes (MOLED)
Publication TypeJournal Article
Year of Publication2014
AuthorsKariaka, NS, Litsis, OO, Sliva, TYu., Kolomzarov, Yu.V, Minyailo, MA, Minakova, IE, Sorokin, VM, Amirkhanov, VM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.04.125
Issue4
SectionChemistry
Pagination125-132
Date Published4/2014
LanguageUkrainian
Abstract

Photoluminescent properties and thermal stability of the complexes EuL3 · 2H2O, EuL3Phen and TbL3 · 2H2O (HL = PhC(O)N(H)P(O)(OCH3)2, Phen = 1,10 -phenantroline) have been studied in order to find new promising electroluminescent materials. A method allowing the fabrication of films from non-aqueous solutions has been developed for the studied compounds. The obtained films were characterized by means of atomic force microscopy and fluorescence spectroscopy. Experimental samples of planar light-emitting heterostructures ITO/BDB/EuWi3 · 2H2O/Al and ITO/PEDOT:PSS/Complex/Al + Ca, ITO/PEDOT:PSS/PVK/Complex/Al + Ca (Complex = EuL3Phen or TbL3 · 2H2O) have been created, and their current-voltage characteristics are investigated.

Keywordsmetallorganic light-emitting diodes, N-dimethyl
References: 

1. Kido J., Ohtaki C., Hongawa K. et al. Jpn. J. Appl. Phys., 1993, 32, No. 7A: 917–920. https://doi.org/10.1143/JJAP.32.L917
2. Katkova M. A., Vitukhnovsky A. G., Bochkarev M. N. Uspekhi khimii, 2005, 74, No. 12: 1193–1215 (in Russian). https://doi.org/10.1070/RC2005v074n12ABEH002481
3. Wang Y. Z., Sun R. G., Meghdadi F. et al. Synth. Met., 1999, 102: 889–892. https://doi.org/10.1016/S0379-6779(98)00378-6
4. Bünzli J.-C. G., Piguet C. Chem. Soc. Rev., 2005, 34, No. 12: 1048–1077. https://doi.org/10.1039/b406082m
5. Zheng Y. X., Shi C. Y., Liang Y. J. et al. Synth. Met., 2000, 114, No. 3: 321–323. https://doi.org/10.1016/S0379-6779(00)00265-4
6. Yu G., Liu Y. Q., Wu X. et al. Chem. Mater., 2000, 12, No. 9: 2537–2541. https://doi.org/10.1021/cm9904537
7. Eliseeva S. V., Bünzli J-C. G. Chem. Soc. Rev., 2010, 39, No. 1: 189–227. https://doi.org/10.1039/B905604C
8. Legendziewicz J., Amirkhanov V., Jan’czak C. et al. J. Appl. Spectr. (rus), 1995, 62, No. 4: 5–17. https://doi.org/10.1007/BF02606529
9. Znovjak K. O., Ovchynnikov V. A., Moroz O. V. et al. Dopov. Nac. akad. nauk Ukr., 2009, No. 6: 143–149 (in Ukrainian).
10. Borzechowska M., Trush V., Turowska-Tyrk I. et al. J. Alloys and Compounds., 2002, 341: 98–106. https://doi.org/10.1016/S0925-8388(02)00075-0
11. Oczko G., Legendziewicz J., Trush V., Amirkhanov V. New J. Chem., 2003, 27: 948–956. https://doi.org/10.1039/B211044J
12. Kariaka N. S., Sliva T. Yu., Trachevsky V. V. et al. Dopov. Nac. akad. nauk Ukr., 2013, No. 1: 123–131 (in Ukrainian).
13. Mironov V. L. Basics of scanning probe microscopy. N. Novgorod: Izd-vo Institute of Physics of Microstructures, RAS, 2004 (in Russian).
14. Latva M., Takalo H., Mukkala V.-M. et al. J. Luminescence, 1997, 75: 149–169. https://doi.org/10.1016/S0022-2313(97)00113-0