Modeling a composite system for remediation of water on the basis of nanosilica and yeast cells

TitleModeling a composite system for remediation of water on the basis of nanosilica and yeast cells
Publication TypeJournal Article
Year of Publication2015
AuthorsKrupskaya, TV, Siora, IV, Klymenko, NY, Novikova, EA, Golovan, AP, Suvorova, LA, Turov, VV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.10.055
Issue10
SectionChemistry
Pagination55-63
Date Published10/2015
LanguageRussian
Abstract

A model system of a composite based on mixes of hydrophobic (AM1-300) and hydrophilic (A-300) silicas, yeast cells, water, and n-decane was created. The influence of nanosilicas on the intensity of growth of yeast genus Saccharomyces cerevisiae was investigated. It was shown that the presence of the composite provides the vital activity of yeast cells even in the absence of a nutrient medium. It was found that small concentrations of the mixture of nanosilicas can stimulate the growth of cells biomass. Our results indicate that the created nanobiocomposite is an effective biodestructor of hydrocarbons in aqueous medium.

Keywordsdestruction of hydrocarbons, interfacial phenomena, nanosilica, water purification, yeast cells
References: 
  1. Lodolo A., Grechishcheva N. Y., Meshcheryakov S. V., Rybalskyi N. G., Snakin V. V., Barsov A. R., Kulyndyshev V. A. Technology of recovery of soils, polluted of petroleum and oil products. Directory, Moscow: REFIA, NIA-Nature, 2003 (in Russian).
  2. Velkov V. V. Biotechnology, 1995, No 3–4: 20–27 (in Russian).
  3. Loginova O. O., Dang T. T., Belousova E. V., Shalimova S. S., Shevchenko M. Y., Grabovich M. Y. Organization and regulation of physiological biochemical processes: Interreg. collect. sci. pap., Iss. 12, Voronezh: Centr. Black Earth Publ., 2010 (in Russian).
  4. Mironov O. G, Doroshenko Y. V. Mar. ecol. J., 2007, 6, No 2: 58–62 (in Russian).
  5. Toren A., Navon-Venezia S., Ron E. Z., Rosenberg E. Appl. Environ. Microbiol, 2001, 67, No 3: 1102–1106. https://doi.org/10.1128/AEM.67.3.1102-1106.2001
  6. Chugunov V. A., Ermolenko Z. M., Zhygletsova S. K., Martovetskaya I. I., Mironova R. I., Zhirkova N. A., Kholodenko V. P. Appl. biochem. and microbial., 2000, 36, No 6: 661–665 (in Russian).
  7. Ellis S., Balba M. T., Theile P. Environ. Sci. Technol, 1990, 11, No 5: R. 443–454.
  8. Tsymberg E. A., Titova L. V., Kurdish I. K. Microbiol. J., 1991, 53, No 4: 55–58 (in Russian).
  9. Kurdish I. K., Bihunov V. L., Tsymberg E. A., Elchits S. V., Vygovskaya E. L., Chuiko A. A. Microbiol. J., 1991, 53, No 2: 41–44 (in Russian).
  10. Krupskaya T. V., Turova A. A., Gun'ko V. M., Turov V. V. Biopolymers and cells, 2009, 25, No 4: 290–297 (in Russian).
  11. Gun'ko V. M., Turov V. V., Bogatyrev V. M., Zarko V. I., Leboda R., Goncharuk E. V., Novza A. A., Turov A. V., Chuiko A. A. Adv. Colloid Interface Sci., 2005, 118: 125–172. https://doi.org/10.1016/j.cis.2005.07.003
  12. Gun'ko V. M., Turov V. V., Gorbik P. P. Water at the interface, Kyiv: Nauk. Dumka, 2009 (in Russian).
  13. Gun'ko V. M., Turov V. V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena, New York: Taylor & Francis, 2013. https://doi.org/10.1201/b14202
  14. Pochinok Ch. N. Methods biochemically of analysis plants, Kyiv: Nauk. Dumka, 1976 (in Russian).
  15. Kvasnikov E. I., Schelkova I. F. Yeasts. Biology. Ways use, Kyiv: Nauk. Dumka, 1991 (in Russian).