Affine-invariant depth-based classifiers on the basis of the k-nearest neighbors method

1Galkin, OA
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 2:25-30
https://doi.org/10.15407/dopovidi2016.02.025
Section: Information Science and Cybernetics
Language: Ukrainian
Abstract: 

Depth-based classifiers on the basis of the k-nearest neighbors method are studied with nonparametric consistency for any continuous distribution. The method of symmetrization of a depth function is proposed, providing a centrally external ordering to determine the nearest neighbors. The construction of a symmetrization asymptotically guarantees the uniqueness of the deepest point that solves the problem of a convex domain with an infinite set of the deepest points. The constructed depth-based classifier based on the depth-based neighborhoods is affine invariant and, therefore, insensitive to extreme values.

Keywords: depth-based classifier, nonparametric consistency, symmetrization
References: 
  1. Oja H., Paindaveine D. J. Statist. Plann. Inference, 2005, 135: 307–321.
  2. Chacon J. I., Duong T., Wand M. P. Statist., 2011, 21: 810–837.
  3. Galkin O. A. Bulletin of Taras Shevchenko National Univ. of Kyiv, Series Phys. & Math., 2014, No 4: 125–130 (in Ukrainian).
  4. Holmes C. C., Adams N. M. Journal of the Royal Statistical Society, 2002, 64: 298–303.
  5. Jornsten R., Vardi Y., Zhang C. H. Statistical data Analysis, 2002: 354–365.
  6. Rousseeum P. J., Struyf A. Statist. Plann. Inference, 2004, 122: 163–170.
  7. Lange T., Mosler K., Mozharovskyi P. Statist. Papers., 2014, 55: 53–67.