The velocity and absorption of sound near the critical point of stratification in the solution nitrobenzene–n-hexane

TitleThe velocity and absorption of sound near the critical point of stratification in the solution nitrobenzene–n-hexane
Publication TypeJournal Article
Year of Publication2016
AuthorsBulavin, LA, Bilous, OI, Svechnikova, OS
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.08.053
Issue8
SectionPhysics
Pagination53-62
Date Published8/2016
LanguageUkrainian
Abstract

The acoustic research of a binary solution nitrobenzene–n-hexane with various concentrations in a wide range of frequencies near its upper critical point of stratification is executed. It is shown that, by the dynamic scaling theory, the velocity of sound should be analyzed separately in three dynamic areas, where the role of fluctuations is absent, significant, or is on the verge of definition. Analysis of the temperature dependence of the velocity of ultrasound allowed us to estimate the lifetime of fluctuations of the concentration in the solution nitrobenzene–n-hexane at its approach to the critical point from the homogeneous state up to 0.1 K.

Keywordsabsorption of ultrasound, binary mixture, critical point of stratification, lifetime of fluctuations of the concentration, velocity
References: 
  1. Bhattacharjee K., Mirzaev S. Z., Kaatze U. Int. J Thermophys, 2012: 469–483. DOI: https://doi.org/10.1007/s10765-012-1167-3
  2. Abdelraziq Issam R., Yun S. S., Stumpf F. B. J. Acoustic. Soc. Am., 1990, 89, No 4: 1831–1836.
  3. Mirzaev S. Z., Kaatze U. Chem. Phys., 2012, 393: 129. DOI: https://doi.org/10.1016/j.chemphys.2011.11.035
  4. Iwanowski I., Mirzaev S. Z., Orzechowski K., Kaatze U. J. Molecular Liquids, 2009, 145: 103–108. DOI: https://doi.org/10.1016/j.molliq.2009.01.001
  5. Kozlovskii M. P. Condens. Matter. Phys., 2005, 8: 473–506. DOI: https://doi.org/10.5488/CMP.8.3.473
  6. Chalyy K. A., Bulavin L. A., Chalyi A. V. J. Phys. Studies, 2005, 9, No 1: 66–70.
  7. Shytilov V. A. Basics of ultrasound physics, Leningrad, Izd. LU, 1980.
  8. Fixman M. J. Chem. Phys., 1962, 36: 1961–1964. DOI: https://doi.org/10.1063/1.1732810
  9. Patashinskii A. Z., Pokrovsky V. L. Fluctuation theory of phase transitions. Moscow, Nauka, 1982 (in Russian).
  10. Anisimov M. A. Critical phenomena in liquid crystals, Moskva, Nauka, 1987 (in Russian).
  11. Artemenko S., Lozovsky T., Mazur V. J. of Phys. Condensed Matter., 2008, 20: 244119,8.
  12. Bulavin L. A, Chekhun, V. F. Vasilkevich O. A. et al. J. Phys. Studies, 2004, 8, No 4: 334–337.
  13. Sperkach V. S., Alekhin A. D., Bilous O. I. Ukr. J. Phys., 2004, 49: 655–658.
  14. Hill R. M. Phys. Stat. Sol., 1981, 103, No 1: 231–239. DOI: https://doi.org/10.1002/pssb.2221030135
  15. Bhattacharjee J. K., Ferrell R. A. Phys. Rev. A, 1981, 24: 1643–1647. DOI: https://doi.org/10.1103/PhysRevA.24.1643