Semilinear equations in a plane and quasiconformal mappings

1Gutlyanskii, VYa., 1Nesmelova, OV, 1Ryazanov, VI
1Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Sloviansk
Dopov. Nac. akad. nauk Ukr. 2017, 1:10-16
https://doi.org/10.15407/dopovidi2017.01.010
Section: Mathematics
Language: English
Abstract: 

We consider generalizations of the Bieberbach equation with nonlinear right parts, which makes it possible to study many problems of mathematical physics in inhomogeneous and anisotropic media with smooth characteristics. We establish interconnections of these semilinear equations with quasiconformal mappings, obtain on this basis, a series of theorems on the existence of their solutions that blow-up on the boundary of a unit disk, as well as on punctured unit disks and rings, and give their explicit representations.

Keywords: Beltrami equation, Bieberbach equation, Keller– Osserman condition, quasiconformal mappings, semilinear elliptic equations
References: 
  1. Diaz J. I. Nonlinear partial differential equations and free boundaries, Vol. I, Elliptic equations, Research Notes in Mathematics, Vol. 106, Boston: Pitman, 1985.
  2. Ghergu M., Radulescu V. Nonlinear PDEs. Mathematical models in biology, chemistry and population genetics, Heidelberg: Springer, 2012.
  3. Keller J. B. Comm. Pure Appl. Math., 1957, 10: 503—510. https://doi.org/10.1002/cpa.3160100402
  4. Osserman R. Pacific J. Math., 1957, 7: 1641— 1647. https://doi.org/10.2140/pjm.1957.7.1641
  5. Marcus M., Veron L. Nonlinear second order elliptic equations involving measures, Series in nonlinear analysis and applications, Vol. 21, Berlin, Boston: de Gruyter, 2014.
  6. Bieberbach L. Math. Ann., 1916, 7, No 7: 173—212. https://doi.org/10.1007/BF01456901
  7. Ahlfors L. V. Lectures on Quasiconformal Mappings, Princeton, N.J.: Van Nostrand, 1966.
  8. Bojarski B., Gutlyanskiĭ V., Martio O., Ryazanov V. Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane, Vol. 19, Zürich: EMS, 2013. https://doi.org/10.4171/122
  9. Gehring F.W. Acta Math., 1978, 141: 99—113. https://doi.org/10.1007/BF02545744
  10. John F. Comm. Pure Appl. Math., 1972, 25: 617—634. https://doi.org/10.1002/cpa.3160250505
  11. Chuaqui M., Gevirtz J. SIAM J. Math. Anal., 2000, 32: 734—759. https://doi.org/10.1137/S0036141099352534
  12. Gevirtz J. Arch. Rational Mech. Anal., 1992, 117: 295—320. https://doi.org/10.1007/BF00376186
  13. John J. Comm. Pure Appl. Math., 1961, 14: 391—413. https://doi.org/10.1002/cpa.3160140316
  14. John F., Nirenberg L. Comm. Pure Appl. Math., 1961, 14: 415—426. https://doi.org/10.1002/cpa.3160140317
  15. Gutlyanskiĭ V., Martio O. Conform. Geom. Dyn., 2001, 5: 6—20. https://doi.org/10.1090/S1088-4173-01-00060-1