Crystal chemical peculiarities of the intermetallic compound Pr(Ni0.2Al0.3Ge0.5)1.8

1Muts, NM, Akselrud, LG, 1Gladyshevskii, RE
1Ivan Franko National University of Lviv
Dopov. Nac. akad. nauk Ukr. 2017, 11:67-75
https://doi.org/10.15407/dopovidi2017.11.067
Section: Chemistry
Language: Ukrainian
Abstract: 

The crystal structure of the Pr(Ni0.2Al0.3Ge0.5)1.8 compound was refined based on X-ray single-crystal diffraction data: modulated structure (basic structure type AlB2) superspace group PA2mm (p00,0q0)m0m with modulation wave vectors p = 0.1540(1), q = 0.3384(1), a = 4.221(2) Å, b = 4.255(2) Å, c = 7.370(3) Å. The structural modulations are induced by the ordering of different sorts of atoms; the modulations of the substitution and displacement of atoms from the ideal positions were observed; the ordering of small-size atoms has own symmetry, which does not correspond to the symmetry of the parent AlB2-type structure.

Keywords: crystal structure, germanide, X-ray diffraction
References: 
  1. Villars, P., Cenzual, K., Daams, J. L. C., Hulliger, F., Massalski, T. B., Okamoto, H., Osaki, K., Prince, A., Berndt, M., Brandenburg, K., Putz, H. & Iwata, S. (Eds). (2002). Pauling File. Inorganic Materials Database. Ohio: ASM International, Materials Park.
  2. Raman, A. & Steinfink, H. (1967). Crystal chemistry of AB2 structures. Investigation on AB2 section in the ternary systems rare-earth — aluminium — silicon — germanium and tin. Inorg. Shem., 6, pp. 1789-1791. https://doi.org/10.1021/ic50056a006
  3. Villars, P., Cenzual, K. & Gladyshevskii, R. (2016). Handbook of Inorganic Substances 2016. Berlin: De Gruyter.
  4. Lutsyshyn, Yu. Ya., Melnyk, I. T., Yanson, T. I. & Gladyshevskii, R. E. (2001). Crystal structure and region homogeneity alimohammadi RAlxGe2–x (R = La, Ce, Pr, Nd, Sm). Proceedings of the XV Ukrainian Conference Inorganic chemistry (p. 56), Kiev (in Ukrainian).
  5. Nakonechna, N., Salash, L., Frankevych, D. & Gladyshevskii, E. (1999). Alimohammadi REE cerium subgroup. Proceedings of the 7th Scientific Conference Lviv Chemical Readings—99 (p. 10), Lviv (in Ukrainian).
  6. Gladyshevskii, E. I. & Bodak, O. I. (1965). Connection with the AlB2-type structures in the system Ce–Ni–Si and related systems. Dop. AN URSR, No. 5, pp. 601-603 (in Ukrainian).
  7. Muts, N., Dendyuk, K., Gladyshevskii, E. I. & Gladyshevskii, R. E. (2005). Triple PrNi2–PrAl2–PrGe2 in a region rich in PrGe2 at 873 K.Visn. Lviv. Univ., Ser. Khim., 46, pp. 39-47 (in Ukrainian).
  8. Lyaskovska, N. & Gladyshevskii, R. (2005). Solid solutions in the PrNi2–PrAl2–PrGe2 system. Acta Cryst., A61, p. C368. https://doi.org/10.1107/S0108767305084394
  9. Muts, N., Akselrud, L. & Gladyshevskii, R. (2005). Structural refinement of Pr(Ni,Al,Ge)2–x in 5D space. Proceedings of the IX International Conference Crystal chemistry intermetallic compounds (p.151), Lviv.
  10. Muts, N., Shcherban, O. & Gladyshevskii, R. (2012). Crystal structure of the quaternary phase Pr(Ni,Al,Ge)2–x at the composition Pr(Ni0.23Al0.03Ge0.74)1.85. Chem. Met. Alloys., 5, pp. 166-172.
  11. Akselrud, L. & Grin, Yu. (2014). WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Crystallogr., 47, pp. 803-805. https://doi.org/10.1107/S1600576714001058
  12. Hahn, T. (Ed.). (2002). International Tables for Crystallography. Vol. A. Dordrecht: Kluwer.
  13. Wilson, A. J. C. & Prince, E. (Eds.). (1999). International Tables for Crystallography. Vol. C. Dordrecht: Kluwer.
  14. Teatum, E., Gschneidner, K. (1960). Complilation of calculated data useful in predicting metallurgical behaviour of the elements in binary alloy systems. Los Alamos, N. M.: Los Alamos Scientific Laboratory of the University of California.