Effective elastic properties of granular stochastic composites under imperfect adhesion

1Khoroshun, LP, 1Levchuk, OI
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 12:33-44
https://doi.org/10.15407/dopovidi2017.12.033
Section: Mechanics
Language: Russian
Abstract: 

Proceeding from the stochastic equations of elasticity of a multicomponent composite, the effective elastic properties of a three-component composite consisting of a matrix, inclusions, and interphase porous layers are investigated. An approach, in which the three-component material is reduced to a two-component one by replacing the inclusions with the interphase layer by effective composite inclusions with equivalent or effective elastic properties, is used. Composite inclusions are modeled by a two-component matrix material, where the inclusions and the matrix have elastic moduli and volume contents according to the real inclusions and interphase layers, respectively. The curves of the dependences of the effective moduli of volume compression and shear on the volume content of inclusions and the porosity of the interphase layers are constructed.

Keywords: effective elastic properties, equivalent properties, imperfect interface conditions, multicomponent material, porous interphase layers, stochastic composite
References: 
  1. Eshelby, J. D. (1957). The determination of the Field of an Ellipsoidal Inclusion and Related Problems. Proceedings of the Royal Society, A241, pp. 376-396. doi: https://doi.org/10.1098/rspa.1957.0133
  2. Hill, R. (1963). Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, pp. 357-372. doi: https://doi.org/10.1016/0022-5096(63)90036-X
  3. Khoroshun, L. P. (2000). Mathematical Models and Methods of the Mechanics of Stochastic Composites (Review). Int. Appl. Mech., 36, No. 10, pp. 1284-1316. doi: https://doi.org/10.1023/A:1009482032355
  4. Brautman, L. & Krok, P. (Eds.). (1970). Modern composite materials. Moscow: Mir.
  5. Benveniste, Y. & Miloh, T. (2001). Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater., 33, pp. 309-323. doi: https://doi.org/10.1016/S0167-6636(01)00055-2
  6. Gu, S. T. & He, Q. C. (2011). Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. J. Mech. Phys., 59, pp. 1413-1426. doi: https://doi.org/10.1016/j.jmps.2011.04.004
  7. Gu, S. T., Liu, J. T. & He, Q. C. (2014). Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. Int. J. Solids Struct., 51, pp. 2283-2296. doi: https://doi.org/10.1016/j.ijsolstr.2014.02.033
  8. Hashin, Z. (1990). Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater., 8, pp. 333-348. doi: https://doi.org/10.1016/0167-6636(90)90051-G
  9. Hashin, Z. (1991). The spherical inclusion with imperfect interface. J. Appl. Mech., 58, pp. 444-449. doi: https://doi.org/10.1115/1.2897205
  10. Hashin, Z. (2002). Thin interphase imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids, 50, pp. 2509-2537. doi: https://doi.org/10.1016/S0022-5096(02)00050-9
  11. Khoroshun, L. P. (2017). Deformation and Short-Term Damage of a Physically Nonlinear Unidirectional Fibrous Composite. Int. Appl. Mech., 53, No. 1, pp. 76-88. doi: https://doi.org/10.1007/s10778-017-0792-8
  12. Khoroshun, L. P. (2016). Deformation and Short-Term Damage of a Physically Nonlinear Unidirectional Fibrous Composite. Int. Appl. Mech., 52, No. 3, pp. 272-281. doi: https://doi.org/10.1007/s10778-016-0750-x
  13. Kregers, A. F. (1988). Mekhanika kompositnyh materialov, No. 3, pp. 433-441 (in Russian).