Enhancement of the efficiency of heat removal from powerful electronic devices through thermal interfaces based on aluminum nitride films

1Rudenko, EM, 2Sorokin, VM, 1Korotash, IV, 1Polotsky, DYu., 1Krakovny, AO, 1Suvorov, OYu., 1Belogolovskii, MO, 2Pekur, DV
1G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv
2V.Ye. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 3:59-68
Section: Physics
Language: Ukrainian

The efficiency of aluminum nitride films as thermal interfaces has been studied. It is shown that such films obtained in a hybrid helicon-arc ion-plasma reactor significantly improve the heat removal from the crystals of electronic devices, in particular, from powerful LEDs or LED assemblies, and thus noteworthy increase their luminosity, reliability, and durability.

Keywords: aluminum nitride, heat sink, LED, thermal interfaces
  1. Moore, A. L.& Shi, L. (2014). Emerging challenges and materials for thermal management of electronics. Mater. Today. 17, No. 4, pp. 163-174. doi: https://doi.org/10.1016/j.mattod.2014.04.003
  2. Pollack, G. L. (1969). Kapitza resistance. Rev. Modern Phys. 41, No. 1, pp. 48-81. doi: https://doi.org/10.1103/RevModPhys.41.48
  3. Due, J. & Robinson, A. J. (2013). Reliability of thermal interface materials: a review. Appl. Thermal Eng. 50, No. 1, pp. 455-463. doi: https://doi.org/10.1016/j.applthermaleng.2012.06.013
  4. Prasher, R. (2006) Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE, 94, No. 8, pp. 1571-1586. doi: https://doi.org/10.1109/JPROC.2006.879796
  5. Bogner, M., Benstetter, G. & Fu, Y. Q. (2017). Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method. Surf. Coat. Technol. 320, pp. 91-96. doi: https://doi.org/10.1016/j.surfcoat.2017.01.100
  6. Chasnyk, V. I. (2013). Application of high-conductivity aluminum nitride ceramics in vacuum electronic microwave devices. Techn. Design. Electron. Equipment. No. 4, pp. 8-12 (in Russian).
  7. Slack, G. A. (1973). Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 34, No. 2, pp. 321-335. doi: https://doi.org/10.1016/0022-3697(73)90092-9
  8. Pan, T. S., Zhang, Y., Huang, J., Zeng, B., Hong, D. H., Wang, S. J., Zeng, H. Z., Gao, M., Huang, W. & Lin, Y. (2012). Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure. J. Appl. Phys. 112, No. 4, pp. 044905-1-044905-5. doi: https://doi.org/10.1063/1.4748048
  9. Semeniuk, V. F., Rudenko, E. M., Korotash, I. V., Osipov, L. S., Polotsky, D. Yu., Shamray, V. V., Odino kov, V. V., Pavlov, G. Ya. & Sologub, V.A. (2011). Unified technological ion-plasma equipment for the formation of nanostructures. Metallofiz. Noveishie Tekhnol. 33, No. 2, pp. 223-231 (in Russian).
  10. Osipov, L., Rudenko, E., Semeniuk, V., Korotash, I., Odinokov, V., Pavlov, G. & Sologub, V. (2010). Highly effective source of the low-temperature deposition of films and coatings. Nanoindustr. No 2, pp. 4-6 (in Russian).
  11. Pat. 87747 UA, IPC C23C 14/34 (2006.01), Plasma device for application of multilayered film coatings, Veremejchenko, G. N., Korotash, I. V., Rudenko, E. M., Semeniuk, V. F., Odinokov, V. V., Pavlov, H. Y. & Solohub, V. A. Publ. 25.02.2014 (in Ukrainian).
  12. Vorobyov, Yu. V., Dobrovolskii, V. N. & Strikha, V. I. (1988). Methods for studying semiconductors. Kyiv: Vyshcha Shkola.
  13. Chen, G. (2005). Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford: Oxford Univ. Press.
  14. Little, W.A. (1959). The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, No. 3, pp. 334-349. doi: https://doi.org/10.1139/p59-037
  15. Swartz, E. T. & Pohl, T. O. (1989). Thermal boundary resistance. Rev. Mod. Phys. 61, No. 3, pp. 605-668. doi: https://doi.org/10.1103/RevModPhys.61.605