Tert-butyldioxophosphorane as metaphosphate analog

1Kolodiazhna, AO, 1Grishkun, EV, 1Gudyma, AO, 1Kolodiazhna, OO, 1Sheiko, SYu., 1Kolodiazhnyi, OI
1Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 5:67-74
https://doi.org/10.15407/dopovidi2018.05.067
Section: Chemistry
Language: English
Abstract: 

The flash-vacuum thermolysis (FVT) of trimethylsilyl tert-butylhalogenophosphonates is performed in an attempt to generate tert-butyldioxophosphorane. The FVT proceeds with elimination of halogenotrimethylsilane to give unstable tert-butyldioxophosphorane readily transforming into a trimer. Tert-butylhalogenophoshonic acids form rather stable salts with trimethylamine, which eliminate triethytamine hydrohalohenide on the heating to afford a trimer.

Keywords: flesh-vacuum thermolysis, tert-butyldioxophosphorane, trimer of tert-butyldioxophosphorane
References: 
  1. Kolodiazhnyi, O. I. & Kolodiazhna, A. O. (2017). Nucleophilic substitution at phosphorus: Stereochemistry and mechanisms. Tetrahedron: Asymmetry, 28, No. 12, pp. 1651-1674. doi: https://doi.org/10.1016/j.tetasy.2017.10.022
  2. Quin L. (2000). A guide to organophosphorus chemistry. New York: John Wiley & Sons, Ltd.
  3. Ding, Y.-L., Mu, J.-R. & Gong, L.-D. (2013). Theoretical study of nucleophilic identity substitution reactions at nitrogen, silicon and phosphorus versus carbon: reaction pathways, energy barrier, inversion and retention mechanisms. J. Chin. Chem. Soc., 60, No. 1, pp. 327-328. doi: https://doi.org/10.1002/jccs.201100750
  4. López-Canut, V., Ruiz-Pernía, J. J., Castillo, R., Moliner, V. & Tuñón, I. (2012). Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms chem. Eur. J., 18, No. 31, pp. 9612-9621. doi: https://doi.org/10.1002/chem.201103615
  5. Quin, L. D., Wu, X.-P., Narayan Sadanani, D., Lukel, I., Ionkin, A. S. & Day, R. O. (1994). Synthesis, fragmentation, and photorearrangement of neopentyl and adamantyl phosphonates in the 2,3-oxaphosphabicyclo[2.2.2]octane system. J. Org. Chem., 59, No. 1, pp. 120-129. doi: https://doi.org/10.1021/jo00080a020
  6. Kolodiazhnyi, O. I. & Kolodiazhna, A. O. (2017). Stereoselective reactions of organophosphorus compounds. Kiev: Naukova Dumka (in Russian).
  7. Gruber, M., Schmutzler, R., Ackermann, M., Seega, J. & Hägele, G. (1989). Menthyl-substituted organophosphorus-compounds. VII1: Fluorinated compounds and derivatives. Phosphorus Sulfur Silicon Relat. Elem., 44, No. 1, pp. 109-122. doi: https://doi.org/10.1080/10426508908043713
  8. Cadogan, J. I. G., Challis, J. A. & Eastlick, D. T. (1971). Reactions of alkyl hydrogen alkylphosphonates with p-nitrobenzonitrile oxide: anchimerically assisted P–O fission in acidic hydrolysis of the resulting α-hydroxyimino-p-nitrobenzyl alkylphosphonates. J. Chem. Soc., Pt. B., No. 12, pp. 1988-1995. doi: https://doi.org/10.1039/J29710001988