Tert-butyldioxophosphorane as metaphosphate analog

TitleTert-butyldioxophosphorane as metaphosphate analog
Publication TypeJournal Article
Year of Publication2018
AuthorsKolodiazhna, AO, Grishkun, EV, Gudyma, AO, Kolodiazhna, OO, Sheiko, SYu., Kolodiazhnyi, OI
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2018.05.067
Issue5
SectionChemistry
Pagination67-74
Date Published5/2018
LanguageEnglish
Abstract

The flash-vacuum thermolysis (FVT) of trimethylsilyl tert-butylhalogenophosphonates is performed in an attempt to generate tert-butyldioxophosphorane. The FVT proceeds with elimination of halogenotrimethylsilane to give unstable tert-butyldioxophosphorane readily transforming into a trimer. Tert-butylhalogenophoshonic acids form rather stable salts with trimethylamine, which eliminate triethytamine hydrohalohenide on the heating to afford a trimer.

Keywordsflesh-vacuum thermolysis, tert-butyldioxophosphorane, trimer of tert-butyldioxophosphorane
References: 
  1. Kolodiazhnyi, O. I. & Kolodiazhna, A. O. (2017). Nucleophilic substitution at phosphorus: Stereochemistry and mechanisms. Tetrahedron: Asymmetry, 28, No. 12, pp. 1651-1674. doi: https://doi.org/10.1016/j.tetasy.2017.10.022
  2. Quin L. (2000). A guide to organophosphorus chemistry. New York: John Wiley & Sons, Ltd.
  3. Ding, Y.-L., Mu, J.-R. & Gong, L.-D. (2013). Theoretical study of nucleophilic identity substitution reactions at nitrogen, silicon and phosphorus versus carbon: reaction pathways, energy barrier, inversion and retention mechanisms. J. Chin. Chem. Soc., 60, No. 1, pp. 327-328. doi: https://doi.org/10.1002/jccs.201100750
  4. López-Canut, V., Ruiz-Pernía, J. J., Castillo, R., Moliner, V. & Tuñón, I. (2012). Hydrolysis of phosphotriesters: a theoretical analysis of the enzymatic and solution mechanisms chem. Eur. J., 18, No. 31, pp. 9612-9621. doi: https://doi.org/10.1002/chem.201103615
  5. Quin, L. D., Wu, X.-P., Narayan Sadanani, D., Lukel, I., Ionkin, A. S. & Day, R. O. (1994). Synthesis, fragmentation, and photorearrangement of neopentyl and adamantyl phosphonates in the 2,3-oxaphosphabicyclo[2.2.2]octane system. J. Org. Chem., 59, No. 1, pp. 120-129. doi: https://doi.org/10.1021/jo00080a020
  6. Kolodiazhnyi, O. I. & Kolodiazhna, A. O. (2017). Stereoselective reactions of organophosphorus compounds. Kiev: Naukova Dumka (in Russian).
  7. Gruber, M., Schmutzler, R., Ackermann, M., Seega, J. & Hägele, G. (1989). Menthyl-substituted organophosphorus-compounds. VII1: Fluorinated compounds and derivatives. Phosphorus Sulfur Silicon Relat. Elem., 44, No. 1, pp. 109-122. doi: https://doi.org/10.1080/10426508908043713
  8. Cadogan, J. I. G., Challis, J. A. & Eastlick, D. T. (1971). Reactions of alkyl hydrogen alkylphosphonates with p-nitrobenzonitrile oxide: anchimerically assisted P–O fission in acidic hydrolysis of the resulting α-hydroxyimino-p-nitrobenzyl alkylphosphonates. J. Chem. Soc., Pt. B., No. 12, pp. 1988-1995. doi: https://doi.org/10.1039/J29710001988