On ideals and contraideals in Leibniz algebras

TitleOn ideals and contraideals in Leibniz algebras
Publication TypeJournal Article
Year of Publication2020
AuthorsKurdachenko, LA, Subbotin, IYa., Yashchuk, VS
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2020.01.011
Issue1
SectionMathematics
Pagination11-15
Date Published1/2020
LanguageEnglish
Abstract

A subalgebra S of a Leibniz algebra L is called a contraideal, if an ideal, generated by S coincides with L. We study the Leibniz algebras, whose subalgebras are either an ideal or a contraideal. Let L be an algebra over a field F with the binary operations + and [ , ]. Then L is called a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies the following identity: [[a, b], c] = [a, [b, c]] – [b, [a, c]] for all a, b, c L. We will also use another form of this identity: [a, [b, c]] = [[a, b], c] + [b, [a, c]]. Leibniz algebras are generalizations of Lie algebras. As usual, a subspace A of a Leibniz algebra L is called a subalgebra, if [x,y] A for all elements x, y Î A. A subalgebra A is called a left (respectively right) ideal of L, if [y,x] A (respectively, [x,y] A) for every x A, y L. In other words, if A is a left (respectively, right) ideal, then [L, A] „ A (respectively, [A, L] „ A). A subalgebra A of L is called an ideal of L (more precisely, a twosided ideal), if it is both a left ideal and a right ideal, that is, [y, x], [x, y] A for every x A, y  L. A subalgebra A of L is called an contraideal of L, if AL = L. The theory of Leibniz algebras has been developed quite intensively, but very uneven. However, there are problems natural for any algebraic structure that were not previously considered for Leibniz algebras. We have received a complete description of the Leibniz algebras, which are not Lie algebras, whose subalgebras are an ideal or a contraideal. We also obtain a description of Lie algebras, whose subalgebras are ideals or contraideals up to simple Lie algebras.

Keywordscontraideal, extraspecial Leibniz algebra, factoralgebra, ideal, Leibniz algebra, Leibniz kernel, Lie algebra, quasisimple Leibniz algebrà, subalgebra
References: 

1. Bloh, A. M. (1965). On a generalization of the concept of Lie algebra. Dokl. AN SSSR, 165, No. 3, pp. 471473.
2. Bloh, A. M. (1967). Cartan—Eilenberg homology theory for a generalized class of Lie algebras. Dokl. AN SSSR, 175, No. 8, pp. 824826.
3. Bloh, A. M. (1971). A certain generalization of the concept of Lie algebra. Algebra and number theory. Uchenye Zapiski Moskow. Gos. Pedagog.Inst., 375, pp. 920 (in Russian).
4. Loday, J.L. (1993). Une version non commutative des alg bres de Lie: les alg bres de Leibniz. Enseign. Math., 39, pp. 269293.
5. Loday, J.L. (1998). Cyclic homology. Grundlehren der Mathematischen Wissenschaften, Vol. 301, 2nd ed., Berlin: Springer. Doi: https://doi.org/10.1007/978-3-662-11389-9
6. Butterfield, J. & Pagonis, C. (1999). From Physics to Philosophy. Cambridge: Cambridge Univ. Press. Doi: https://doi.org/10.1017/CBO9780511597947
7. Dobrev, V. (Ed.). (2013). Lie Theory and its applications in physic. IX International workshop, Vol. 36, Springer: Tokyo. Doi: https://doi.org/10.1007/978-4-431-54270-4
8. Chupordya, V. A., Kurdachenko, L. A. & Subbotin, I. Ya. (2017). On some “minimal” Leibniz algebras. J. Algebra Appl., 16, No. 5, 1750082, 16 p. Doi: https://doi.org/10.1142/S0219498817500827
9. Kurdachenko, L. A., Semko, N. N. & Subbotin, I. Ya. (2017). The Leibniz algebras whose subalgebras are ideals. Open Math., 15, pp. 92100. Doi: https://doi.org/10.1515/math-2017-0010