Interphase phenomena in a composite system based on methylsilica and crushed mushrooms Amanita muscaria

1Krupska, TV
Yelahina, NV
Protsak, IS
1Turov, VV
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2020, 11:61-70
https://doi.org/10.15407/dopovidi2020.11.061
Section: Chemistry
Language: Ukrainian
Abstract: 

1H NMR spectroscopy revealed that AM-1/Amanita composite systems are characterized by the significantly higher water binding energy than the starting materials, which can be used to create drug composites with increased retention time of biologically active substances that are a part of the fungus Amanita muscaria. It is in vestigated that the amount of weakly associated water is an order of magnitude smaller and is observed only at high temperatures (T > 270 K), whereas, in the chloroform medium, the number of weakly associated forms of water increases, and it is registered in the whole temperature range. It was found that, at temperatures T > 273 K in hydrophobic-hydrophilic systems AM-1/Amanita, the existence of a metastable solid state of water is possible.

Keywords: Amanita muscaria fungus, composite system, methylsilica, weakly associated water
References: 

1. Chuiko, A. A., Pogorely, V. K., Barvinchenko, V. N., Lipkovskaya, N. A., Kovtyukhova, N. I. & Turov, V. V. (1999). Physicochemical and clinical substantiation of the effectiveness of drugs of the Phytosil family. Chemistry, physics, and technology of surface, 3, pp. 3-9 (in Russian).
2. Chuiko, A. A. (Ed.). (2003). Medical chemistry and clinical applications of silica dioxide. Kiev: Naukova Dumka (in Russian).
3. Turov, V. V., Krupskaya, T. V., Golovan, A. P., Andriyko, L. S. & Kartel, M. T. (2017). Prolonged composite systems based on crushed medicinal plants and nanosilica. Nauka innov., 13, No. 2, pp. 59-67 (in Russian). https://doi.org/10.15407/scin13.02.059
4. Turov, V. V., Krupskaya, T. V., Golovan, A. P., Andriyko, L. S., Tsapko, M. D., Ostrovskaya, G. V., Kalmyko va, O. A. & Kartel, M. T. (2016). The effect of silica on the hydration of Hibbiscus sabdariffa flowers in neutral and acidic environments. Nanosystems, nanomaterials, nanotechnologies, 14, No. 4, pp. 643-660 (in Russian).
5. Blitz, J. P. & Gun’ko, V. M. (Eds.). (2006). Surface chemistry in biomedical and environmental science, NATO Science Series II: Mathematics, Physics and Chemistry (vol. 228). Dordrecht: Springer. https://doi.org/10.1007/1-4020-4741-X
6. Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M.J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G.G., Leblanc, J.-C., Lillegaard, I.T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R.A., Wright, M., Boon, P., Chrysafidis, D., Gürtler, R., Mosesso, P., Parent-Massin, D., Tobback, P., Kovalkovicova, N., Rincon, A.M., Tard, A. & Lambré, C. (2018). Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA Journal, 16, No. 1, pp. 1-70. https://doi.org/10.2903/j.efsa.2018.5088
7. Auner, N. & Weis, J., (Eds.) (2005). Oganosilicon chemistry VI: From molecules to materials. Weinheim: Wiley. https://doi.org/10.1002/9783527618224
8. Takemoto, T, Nakajima, T. & Sakuma, R. (1964). Isolation of a flycidal constituent ibotenic acid from Amanita muscaria and A. pantherina. J. Pharmacol. Soc. Japan, 84, pp. 1233-1234. https://doi.org/10.1248/yakushi1947.84.12_1186
9. Michelot, D. & Melendez-Howell, L. M. (2003). Amanita muscaria: chemistry, biology, toxicology and ethnomycology. Mycol. Res., 107, No. 2, pp. 131-146. https://doi.org/10.1017/S0953756203007305
10. Gun’ko, V. M., Turov, V. V., Pakhlov, E. M., Krupska, T. V., Borysenko, M. V., Kartel, M. T. & Charmas, B. (2018). Water inter actions with hydrophobic versus hydrophilic nanosilica. Langmuir, 34, No. 40, pp. 12145-12153. https://doi.org/10.1021/acs.langmuir.8b03110
11. Turov, V. V. & Gun’ko, V. M. (2011). Clustered water and ways of using it. Kiev: Naukova Dumka (in Russian).
12. Gun’ko, V.M. & Turov, V.V. (2013). Nuclear magnetic resonance studies of interfacial phenomena. New York: Taylor & Francis. https://doi.org/10.1201/b14202
13. Gun’ko, V. M., Turov, V. V., Bogatyrev, V. M., Zarko, V. I., Leboda, R., Goncharuk, E. V., Novza, A. A., Turov, A. V. & Chuiko, A. A. (2005). Unusual properties of water at hydrophilic/hydrophobic interfaces. Adv. Colloid Interface Sci., 118, No. 1-3, pp. 125-172.
14. Gun’ko, V. M., Turov, V. V., Krupska, T. V., Ruban, A. N., Kazanets, A. I., Leboda, R. & Skubiszewska-Zieba, J. (2013). Interfacial behavior of silicone oils interacting with nanosilica and silica gels. J. Colloid Interface Sci., 394, pp. 467-474. https://doi.org/10.1016/j.jcis.2012.12.026