Influence of a near-electrode layer thickness on the diffusion impedance

Pototskaya, VV, 1Gichan, OI, Skryptun, IN, Omel'chuk, AA
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 1:34-42
https://doi.org/10.15407/dopovidi2018.01.034
Section: Physics
Language: Ukrainian
Abstract: 

It is shown that the impedance of a near-electrode layer increases with the thickness of the Nernst diffusion layer. A qualitative estimation of the phase angle of the diffusion impedance depending on the frequency at different diffusion layer thicknesses is obtained. It is shown that the diffusion is a reason for a delay in the phase of changes in the surface concentration of species with respect to the current.

Keywords: diffusion impedance, impedance spectroscopy, mass transfer, Nernst diffusion layer, oscillatory diffusion layer, phase angle
References: 
  1. Drossbach, P. & Schulz, J. (1964). Elektrochemische untersuchungen an kohleelektroden –I. Die Űberspannung des Wasserstoffs. Electrochim. Acta., 9, pp. 1391-1404. doi: https://doi.org/10.1016/0013-4686(64)85018-0
  2. Franceschetti, D. R., Macdonald, J. R. & Buck, R. P. (1991). Interpretation of finite-length-Warburg-type impedances in supported and unsupported electrochemical cells with kinetically reversible electrodes. J. Electrochem. Soc., 138, No. 5, pp. 1368-1371. doi: https://doi.org/10.1149/1.2085788
  3. Jacobsen, T. & West, K. (1995). Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim. Acta., 40, No. 2, pp. 255-262. doi: https://doi.org/10.1016/0013-4686(94)E0192-3
  4. Bisquert, J. & Compte, A. (2001). Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem., 499, pp. 112-120. doi: https://doi.org/10.1016/S0022-0728(00)00497-6
  5. Gabano, J. D., Poinot, T. & Huard, B. (2017). Bounded diffusion impedance characterization of battery electrodes using fractional modeling. Commun. Nonlinear Sci. Numer. Simul., 47, pp. 164-177. doi: https://doi.org/10.1016/j.cnsns.2016.11.016
  6. Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F. & Bueno, P. R. (1999). Theoretical models for acimpedance of finite diffusion layers exhibiting low frequency dispersion. J. Electroanal. Chem., 475, pp. 152-163. doi: https://doi.org/10.1016/S0022-0728(99)00346-0
  7. Lelidis, I., Macdonald, J. R. & Barbero, G. (2016). Poisson–Nernst–Planck model with Chang-Jaffe, diffusion, and ohmic boundary conditions. J. Phys. D: Appl. Phys., 49, 025503. doi: https://doi.org/10.1088/0022-3727/49/2/025503
  8. Nielsen, J. & Hjelm, J. (2014). Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Elecrochim. Acta., 115, pp. 31-45. doi: https://doi.org/10.1016/j.electacta.2013.10.053
  9. Schönleber, M., Uhlmann, C., Braun, P., Weber, A. & Ivers-Tiffée, E. (2017). A consistent derivation of the impedance of a lithium-ion battery electrode and its dependency on the state-of-charge. Electrochim. Acta., 243, pp. 250-259. doi: https://doi.org/10.1016/j.electacta.2017.05.009
  10. Jacobsen, T., Hendriksen, P.V., Koch, S. (2008). Diffusion and convection impedance in solid oxide fuel cells. Electrochim. Acta., 53, pp. 7500-7508. doi: https://doi.org/10.1016/j.electacta.2008.02.019
  11. Vetter, K.J. (1961). Elektrochemische Kinetik. Berlin: Springer. https://doi.org/10.1007/978-3-642-86547-3
  12. Takemori, Y., Kambara, T., Senda, M. & Tachi, I. (1957). Alternating current chronopotentiometry – reversible electrode process. J. Phys. Chem., 61, pp. 968-969. doi: https://doi.org/10.1021/j150553a029
  13. Gorodyskii, A. V., Yudenkova, I. N. & Ischenko, N. A. (1982). Influence of alternative current frequencies on electrochemical polishing of carbon steel. Ukr. khim. zhur., 48, pp. 1105-1107 (in Russian).