Biochemical and cytogenetic indices of peripheral blood lymphocytes in patients with prostate cancer

1Domina, EA, 2Stakhovskyy, EO, 3Safronova, OV, 1Druzhyna, MO, 1Makovetska, LI, 1Glavin, OA, 1Semyglazova, TV
1R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv
2National Cancer Institute, Kyiv
3Clinical Íospital "Feofaniya" of State Administration of Affairs, Kyiv
Dopov. Nac. akad. nauk Ukr. 2018, 4:102-109
https://doi.org/10.15407/dopovidi2018.04.102
Section: Medicine
Language: Ukrainian
Abstract: 

We discuss the interindividual variability of prostate cancer patients' radiosensitivity, as well as an increase in the frequency of chromosomal exchanges in blood lymphocytes, which is associated with the inhibition of the DNA double-break repair. Patients with high activity of free radical processes require additional rehabilitation measures to prevent radiation complications.

Keywords: blood lymphocytes, chromosome aberrations, free radical processes, prostate cancer, radiation complications
References: 
  1. Schmitz, S., Brzozowska, K., Pinkawa, M., Eble, M. & Kriehuber, R. (2013). Chromosomal radiosensitivity analyzed by FISH in lymphocytes of prostate cancer patients and healthy donors. Radiat. Res., 180, No. 5, pp. 465-473. doi: https://doi.org/10.1667/RR3239.1
  2. Montzka, K. & Heidenreich, A. (2010). Castration-resistant prostate cancer: definition, biology and novel thera peutic intervention strategies. Ann. Urol., 1, Iss. 1, pp. 29-34.
  3. Domina, E.A. (2017). Individual radiosensitivity of blood lymphocytes of prostate cancer patients. Sciences of Europe, 1, No. 18, pp. 38 (in Russian).
  4. Ke, G., Liang, L., Yang, J.M., Huang, X., Han, D., Huang, S., Zhao, Y., Zha, R., He, X. & Wu, X. (2013). MiR-181 a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptic PRK CD gene. Oncogene, 32, pp. 3019-3027. doi: https://doi.org/10.1038/onc.2012.323
  5. Azria, D., Ozsahin, M., Kramar, A., Peters, S., Atencio, D.P., Crompton, N.E., Mornex, F., Pèlegrin, A., Dubois, J.B., Mirimanoff, R.O. & Rosenstein, B.S. (2008). Single nucleotide polymorphisms, apoptosis and the development of severe late adverse effects after radiotherapy. Clin. Cancer Res., 14, No. 19, pp. 6284-6288. doi: https://doi.org/10.1158/10780432.CCR080700
  6. Lacombe, J., Azria, D., Mange, A. & Solassol, J. (2013). Proteomic approaches to identify biomarkers predictive of radiotherapy outcomes. Expert Rev. Proteomic., 10, No. 1, pp. 33-42. doi: https://doi.org/10.1586/epr.12.68
  7. Shulenina, L.V., Mikhailov, V.F., Raeva, N.F., Saleyeva, D.V., Neznanova, M.V. & Zasukhina, G.D. (2017). MicroRNA in the blood of patients with prostate cancer as a possible indicator of early complications of radiation therapy. Radiatsionnaia biologiia. Radioecologiia, 57, No. 6, pp. 598-607 (in Russian).
  8. Brzozowska, K., Pinkawa, M., Eble, M.J., Müller, W.U., Wojcik, A., Kriehuber, R. & Schmitz, S. (2012). In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side effects after radiotherapy. Int. J. Radiat. Biol., 88, No. 5, pp. 405-413. doi: https://doi.org/10.3109/09553002.2012.666002
  9. West, C.M., Davidson, S.E., Elyan, S.A., Valentine, H., Roberts, S.A., Swindell, R. & Hunter, R.D. (2001). Lymphocyte radiosensitivity is a significant prognostic factor for morbidity in carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys., 51, No. 1, pp. 10-15. doi: https://doi.org/10.1016/S0360-3016(01)01575-9
  10. Snyder, A.R. (2004). Review of radiation-induced bystander effects. Hum. Exp. Toxicol., 23, No. 2, pp. 87-89. doi: https://doi.org/10.1191/0960327104ht423oa
  11. Serkiz, Ya.I., Druzhyna, N.A., Khrienko, A.P., Pavlenko, I.O. & Shlumukova, I.F. (1989). Chemiluminescence of blood upon radiation exposure. Kiev: Naukova Dumka (in Russian).
  12. L'vovskaya, E.I., Volchegorskiy, I.A., Shemyakov, S.E. & Lifshits, R.I. (1991). Spectrophotometric determi nation of lipid peroxidation terminal products. Voprosy meditsinskoy khimii, 37, No. 4, pp.92-93 (in Russian).
  13. Liochev, S. I. & Fridovich, I. (1997). Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch. Biochem. Biophys., 337, No. 1, pp. 115-120. doi: https://doi.org/10.1006/abbi.1997.9766
  14. Korolyuk, M.A., Ivanova, L.I. & Mayorova, I.G. (1988). Method for determination of catalase activity. Lab. delo, No. 1, pp. 16-19 (in Russian).
  15. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. (2011). Vienna: IAEA.